Highlights

From 2011 to 2019, estimated annual gabapentin reports increased from 918 to 3,139 reports (242%). From 2019 to 2020, gabapentin reports decreased from 3,139 to 2,928 reports (7%).

From 2011 to 2019, estimated annual pregabalin reports increased from 275 to 324 reports (18%). From 2019 to 2020, pregabalin reports decreased from 324 to 234 reports (28%).

Among items containing gabapentin reported from 2018 through 2020 that had at least one other drug in the same item, 51% contained fentanyl, 30% contained heroin, 14% contained an unspecified prescription drug, and 12% contained methamphetamine.

From 2016 through 2020, a total of 333.93 million gabapentin prescriptions and 51.38 million pregabalin prescriptions were dispensed. The highest numbers of prescriptions for both gabapentin and pregabalin were dispensed in 2020.

Note: The number of cases submitted and analyzed during 2020 declined noticeably, which is likely due, in part, to the impacts of the coronavirus disease (COVID-19) pandemic. Use caution when comparing 2020 estimates with previous years’ estimates.
Contents

Highlights ... i

Introduction .. 1

National Estimates ... 2

Regional Trends in Gabapentin Reports 3

Gabapentin Reported with Other Drugs in the Same Item 4

Gabapentin Reports, by State and County 5

Gabapentin and Pregabalin Prescriptions Dispensed, 2016–2020 9

References ... 10

Appendix ... 11

Methodology, Public Domain Notice, and Obtaining Copies of
This Publication ... 14
Introduction

The National Forensic Laboratory Information System (NFLIS) is a program of the U.S. Drug Enforcement Administration (DEA), Diversion Control Division. NFLIS-Drug systematically collects drug identification results and associated information from drug cases submitted to and analyzed by Federal, State, and local forensic laboratories. These laboratories analyze controlled and noncontrolled substances secured in law enforcement operations across the country, making NFLIS-Drug an important resource in monitoring illicit drug abuse and trafficking, including the diversion of legally manufactured pharmaceuticals into illegal markets.

Gabapentin and pregabalin are prescription drugs that have been approved by the U.S. Food and Drug Administration (FDA) to be prescribed as anti-epileptics or as non-opioid alternatives for treating neuropathic pain. Gabapentin is sold under brand names such as Neurontin®, Horizant®, and Gralise®, and pregabalin is sold under the brand name Lyrica™. In a 2015 study that analyzed overdose deaths in five geographically diverse U.S. jurisdictions (Kentucky; North Carolina; West Virginia; Maricopa County, Arizona; and Northeast Tennessee), 22% of all overdose decedents tested positive for gabapentin. The positivity rate varied considerably between jurisdictions, from the lowest of 4% in Northeast Tennessee to the highest of 41% in Kentucky. The positivity rate for gabapentin was 26% among drug overdose decedents who tested positive for opioids. In 2019, the FDA announced a new mandate that labels of gabapentin and pregabalin contain a warning about respiratory depression.

Pregabalin is controlled in Schedule V of the Federal Controlled Substances Act. Although not controlled federally, some States also list gabapentin as a Schedule V controlled substance because of its abuse potential as a non-opioid pain reliever. At least 26 States and the District of Columbia have enacted legislation or introduced a bill to schedule gabapentin as a controlled substance or to submit distribution information through a reporting system (e.g., prescription drug monitoring program) (Figure 1; Appendix). Gabapentin misuse and diversion were first reported in the literature in 1997. This publication presents results of gabapentin and pregabalin drug cases submitted to State and local laboratories from January 1, 2011, through December 31, 2020. National and regional estimates and IQVIA SMART, U.S. Launch Edition and U.S. Regional Edition, National Prescription Audit® (NPA) data on dispensed prescriptions of gabapentin and pregabalin are presented. Gabapentin reports that contain at least one other drug in the same item and State and county maps also are included.

Figure 1 Legislative status of gabapentin in the United States, October 2021
National Estimates

Figures 2 and 3 present national annual estimates of gabapentin and pregabalin reports that were submitted to State and local laboratories from January 2011 through December 2020 and analyzed within three months of each calendar year reporting period. In 2018, gabapentin was included for the first time as one of the top 25 most frequently identified drugs in NFLIS-Drug (24th), and it continued to be listed in 2019 (25th) and 2020 (25th). From 2011 to 2019, estimated annual gabapentin reports increased from 918 to 3,139 reports (242%). From 2012 to 2019, gabapentin reports increased between 7% and 33% annually; however, from 2019 to 2020, reports decreased significantly, from 3,139 to 2,928 reports (7%). The largest annual increases in gabapentin reports occurred from 2014 to 2015 (27%), from 2015 to 2016 (33%), and from 2017 to 2018 (20%).

From 2011 to 2019, annual pregabalin reports increased significantly, from 275 to 324 reports (18%). From 2013 to 2016, pregabalin reports increased by between 12% and 22% annually, with the largest increases occurring from 2013 to 2014 (22%) and from 2015 to 2016 (20%). From 2016 to 2020, pregabalin reports decreased by between 4% and 28% annually. From 2019 to 2020, pregabalin reports decreased significantly, from 324 to 234 reports (28%).

Figure 2 National annual estimates for gabapentin in NFLIS-Drug, 2011–2020

![Figure 2](https://example.com/figure2.png)

Figure 3 National annual estimates for pregabalin in NFLIS-Drug, 2011–2020

![Figure 3](https://example.com/figure3.png)

1 Includes reports submitted to State and local laboratories from January 1, 2011, through December 31, 2020, and analyzed within three months of each calendar year reporting period.

2 The number of cases submitted and analyzed during 2020 declined noticeably, which is likely due, in part, to the impacts of the coronavirus disease (COVID-19) pandemic. Use caution when comparing 2020 estimates with previous years' estimates.
Regional Trends in Gabapentin Reports

Regionally, the Northeast had the highest number of gabapentin reports per 100,000 persons aged 15 or older in 2011, 2012, and 2014, and from 2016 through 2019 (Figure 4). In 2013, 2015, and 2020, the South’s rates were slightly higher than those of the Northeast. From 2011 through 2020, the number of gabapentin reports per 100,000 persons aged 15 or older was higher than the national trend across all years in the North and across all years except 2011 in the South. The Midwest’s rate surpassed the national trend only in 2018. The West’s number of gabapentin reports per 100,000 persons aged 15 or older was the lowest in every year and was always below the national trend.

Gabapentin reports per 100,000 persons aged 15 or older increased significantly in all regions from 2011 through 2020. In the Northeast, the rate increased to more than 1.5 reports in 2017, where it remained until 2020, when the rate decreased to 1.3 reports. In the South, reports rose to 1.6 reports per 100,000 persons in both 2019 and 2020. The rate of gabapentin reports in the Midwest was highest in 2019 (1.2) but decreased to 1.0 in 2020. In the West, the rate reached a high of 0.4 reports in 2018.

The Northeast and the South had the highest number of pregabalin reports per 100,000 persons aged 15 or older in 2011, the South had the highest rates from 2012 through 2015, the South and the Midwest had the same rates in 2016, and the Midwest had the highest numbers from 2017 through 2020 (Figure 5). The West had the lowest number of pregabalin reports per 100,000 persons aged 15 or older in every year. The numbers of pregabalin reports per 100,000 persons aged 15 or older in the West were always below the national trend, as were those in the Northeast from 2012 through 2020. The number of pregabalin reports per 100,000 persons aged 15 or older in the South was higher than the national trend across all years, as were the rates in the Midwest from 2012 through 2020. The Northeast’s rates surpassed the national trend only in 2011.

From 2012 to 2020, regional reports of pregabalin per 100,000 persons were substantially higher in the Midwest and South than in the West and Northeast. In 2011, reports per 100,000 persons in the South and Northeast were similar (0.15); however, rates in the South increased to 0.27 by 2016, whereas rates in the Northeast settled at around 0.07 by 2014. From 2011 to 2016, reports per 100,000 persons in the Midwest increased from 0.11 reports to 0.27 reports (a 140% increase). Similarly, rates in the South increased from 0.15 to 0.27 (a 79% increase) during this same period. The annual number of pregabalin reports per 100,000 persons continued to increase in the Midwest through 2017 (0.29) and remained higher than the annual numbers in the other three regions through 2020. In 2020, the annual number of reports per 100,000 persons was fewer than 0.15 across the same four regions.

Figure 4 National and regional trends in gabapentin reports per 100,000 persons aged 15 or older, January 2011–December 2020

1 Includes reports submitted to State and local laboratories from January 1, 2011, through December 31, 2020, and analyzed within three months of each calendar year reporting period.

2 The number of cases submitted and analyzed during 2020 decreased noticeably, which is likely due, in part, to the impacts of the coronavirus disease (COVID-19) pandemic. Use caution when comparing 2020 estimates with previous years’ estimates.
Figure 5 National and regional trends in pregabalin reports per 100,000 persons aged 15 or older, January 2011–December 2020\(^1,2\)

\[^1\] Includes reports submitted to State and local laboratories from January 1, 2011, through December 31, 2020, and analyzed within three months of each calendar year reporting period.

\[^2\] The number of cases submitted and analyzed during 2020 decreased noticeably, which is likely due, in part, to the impacts of the coronavirus disease (COVID-19) pandemic. Use caution when comparing 2020 estimates with previous years’ estimates.

Gabapentin Reported with Other Drugs in the Same Item

This section presents raw data from Federal, State, and local laboratories on gabapentin combination items—items reported with gabapentin and at least one other drug in the same item. The data presented in this section are not necessarily counts of true combinations (e.g., powders mixed together); they also include counts of separate drugs reported together in the same item. For example, a bag of gabapentin packaged with a bag of heroin may be considered a single item, and both would be reported as substances within that item. Policies for identifying what constitutes an item vary by laboratory. Data presented in this section were generated on August 31, 2021, from the NFLIS-Drug database.

Among items containing gabapentin reported from 2018 through 2020, 619 had at least one other drug in the same item. Of these gabapentin combination items, 51% contained fentanyl, 30% contained heroin, 14% contained an unspecified prescription drug, and 12% contained methamphetamine (Figure 6).

Figure 6 Percentage of all NFLIS-Drug 2018–2020 items containing gabapentin and at least one other drug\(^1,2\)

- Fentanyl: 51%
- Heroin: 30%
- Unspecified prescription drug: 14%
- Methamphetamine: 12%
- Cocaine: 9%
- Tramadol: 4%
- Caffeine: 4%
- Quinine: 4%
- Acetyl fentanyl: 3%
- ANPP\(^3\): 3%

\[^1\] The data presented in this figure were generated on August 31, 2021, from the NFLIS-Drug database.

\[^2\] The data presented in this figure are not necessarily counts of true combinations (e.g., powders mixed together); they also include counts of separate drugs reported together in the same item.

\[^3\] ANPP = 4-anilino-N-phenethyl-4-piperidine.
Gabapentin Reports, by State and County

The data presented in this section are raw data—not estimates—from Federal, State, and local laboratories that were generated on September 7, 2021, from the NFLIS-Drug database. When data for this report were generated, a small number of laboratories were not reporting data to NFLIS-Drug. The absence of their data may have affected the reporting of the relative distribution of drugs that were seized and analyzed. The geographic data are based on information provided to the forensic laboratories by the submitting law enforcement agencies in the county of origin associated with the drug seizure incident. It is important to note that these data represent only those items that were submitted to and analyzed by forensic laboratories. State-level legislation and reporting requirements can change over time, affecting which substances are submitted, tested for, and reported.

Figure 7 shows that 30 States had at least one gabapentin report in 2011, and 3 States had 100 or more reports. Less than 1% of drug reports in all States were reported as gabapentin (Figure 8). By 2020, 42 States had at least one gabapentin report (Figure 9). Also in 2020, seven States had more than 100 gabapentin reports; four of these States—Kentucky, Ohio, Tennessee, and Virginia—each had more than 300 gabapentin reports. In 2020, 1% or more of all drug reports in five States were gabapentin (Figure 10).

From 2011 to 2020, the percentage of total drug reports that were identified as gabapentin increased in 23 States but decreased in California, Connecticut, Kansas, Minnesota, Missouri, Nebraska, and South Dakota. Seven States—Delaware, Hawaii, Illinois, Montana, Rhode Island, Utah, and Wyoming—had no gabapentin reports in 2011 or 2020. States with the highest relative increases in gabapentin reports as a percentage of their total drug reports were generally in the South and Midwest. Increases of 1,000% or more occurred in Oklahoma (1,953%), Indiana (1,319%), and New Jersey (1,277%), and increases of 500% or more occurred in Ohio (762%), Maryland (695%), Florida (630%), Louisiana (586%), Alabama (579%), and Pennsylvania (577%). New Mexico (247%) and Arizona (191%) had the largest relative increases in the West.

Figure 7 Gabapentin reports, by State, 2011

Figure 8 Percentage of total drug reports identified as gabapentin, by State, 2011

1 The data presented in this figure were generated on September 7, 2021, from the NFLIS-Drug database.
The rest of this section shows gabapentin reports, by counties in selected States, in 2011 and 2020. States were selected based on their geographic diversity (one State per U.S. census region) and large relative increases from 2011 to 2020 in the number and percentage of total drug reports identified as gabapentin.

Arizona had the 3rd highest number of gabapentin reports in the West in 2011 and the highest number of gabapentin reports in the West in 2020. In 2011, Maricopa County was the only county in Arizona that reported gabapentin; its 13 gabapentin reports represented just 0.1% of total drug reports in the county (Figure 11). By 2020, 7 of the 15 counties in Arizona had at least one gabapentin report; Maricopa County again had the highest number of reports (33), representing 0.2% of total drug reports in the county (Figure 12). Graham County was the only county in which gabapentin represented at least 1% of total drug reports (two reports, 11%).

Figure 9 Gabapentin reports, by State, 2020

Figure 10 Percentage of total drug reports identified as gabapentin, by State, 2020

Figure 11 Percentage of total drug reports identified as gabapentin in Arizona, by county, 2011

Figure 12 Percentage of total drug reports identified as gabapentin in Arizona, by county, 2020
In 2011, Indiana had only 4 gabapentin reports, but by 2020, it had the 2nd highest number of reports in the Midwest and the 12th highest number across all 50 States (62 reports). Of the 92 counties in Indiana, only 2 had gabapentin reports in 2011: DeKalb County (1) and Howard County (3); though in DeKalb County, this one report constituted 2.2% of total drug reports (Figure 13). By 2020, 28 counties in Indiana had at least one gabapentin report, with the highest percentages occurring in Howard (15 reports) and Clark (11 reports) Counties. In 11 counties, gabapentin represented 1% or more of total drug reports, with the highest percentages reported in Switzerland (10.0%), Brown (5.4%), Huntington (2.8%), Washington (2.6%), and Lawrence (2.5%) Counties (Figure 14).

In 2011, Massachusetts had the highest number of gabapentin reports (334), with 12 of the 14 counties reporting gabapentin. The highest numbers occurred in Suffolk (137 reports), Middlesex (65 reports), Norfolk (44 reports), and Plymouth (27 reports) Counties. Gabapentin accounted for 1% or more of total drug reports in Dukes (4.5%), Suffolk (2.5%), Norfolk (2.1%), and Plymouth (1.2%) Counties (Figure 15). In 2020, the counties in Massachusetts with the highest numbers of gabapentin reports were Middlesex (75), Worcester (65), Suffolk (34), and Norfolk (31) Counties. Gabapentin accounted for 1% or more of total drug reports in half of the counties in Massachusetts: Norfolk (2.9%), Bristol (2.4%), Middlesex (1.9%), Suffolk (1.9%), Plymouth (1.9%), Worcester (1.7%), and Essex (1.0%) Counties (Figure 16).

1 The data presented in this figure were generated on September 7, 2021, from the NFLIS-Drug database.
Gabapentin became a Schedule V controlled substance in Tennessee in 2018. Tennessee had no reports of gabapentin in 2011 (Figure 17). By 2020, however, Tennessee had the highest number of gabapentin reports in the country (672). Of Tennessee’s 95 counties, 66 had at least one gabapentin report in 2020, with the highest numbers occurring in Sullivan (61 reports), Wilson (38 reports), Sevier (37 reports), Anderson (35 reports), and Knox (34 reports) Counties. Gabapentin accounted for 1% or more of total drug reports in more than half of Tennessee’s 95 counties, with the highest percentages reported in Grainger (14.7%), Hancock (10.2%), Grundy (7.7%), Claiborne (7.5%), and Clay (6.4%) Counties (Figure 18).

![Figure 17](image1.png)
Figure 17 Percentage of total drug reports identified as gabapentin in Tennessee, by county, 2011

![Figure 18](image2.png)
Figure 18 Percentage of total drug reports identified as gabapentin in Tennessee, by county, 2020

1 The data presented in this figure were generated on September 7, 2021, from the NFLIS-Drug database.
Gabapentin and Pregabalin Prescriptions Dispensed, 2016–2020

The IQVIA Smart, U.S. Launch Edition and U.S. Regional Edition, NPA measures the retail outflow of prescriptions through retail pharmacies, mail services, and long-term care facilities. Figure 19 shows IQVIA data on the total prescription volume (in millions) of gabapentin and pregabalin from 2016 through 2020 in the United States. Total prescription volume includes prescriptions and prescription refills. From 2016 through 2020, a total of 333.93 million gabapentin prescriptions and 51.38 million pregabalin prescriptions were dispensed. The lowest number of gabapentin prescriptions was dispensed in 2016 (64.49 million), and the lowest number of pregabalin prescriptions was dispensed in 2018 (9.91 million). The highest numbers of prescriptions for both gabapentin (69.00 million) and pregabalin (11.11 million) were dispensed in 2020.

Figure 20 shows the top 10 States with the highest numbers of gabapentin prescriptions dispensed in 2020. California had the highest number of gabapentin prescriptions dispensed (5.80 million), followed by Texas (4.92 million).
References

Appendix

<table>
<thead>
<tr>
<th>State</th>
<th>Gabapentin Status</th>
<th>Relevant Gabapentin Legislation</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama¹</td>
<td>Gabapentin classified as Schedule V</td>
<td>Section 20-2-210</td>
<td>11/18/2019</td>
</tr>
<tr>
<td>Connecticut²</td>
<td>Required reporting to Connecticut Prescription Monitoring and Reporting System</td>
<td>Chapter 420b, Sections 21a-254(j) and 21a-254(j)(2)</td>
<td>01/01/2021</td>
</tr>
<tr>
<td>Delaware³</td>
<td>Bill to classify gabapentin as Schedule V cleared committee on 6/19/2019; bill failed to advance</td>
<td>HB 233, Title 16</td>
<td>N/A</td>
</tr>
<tr>
<td>District of Columbia⁴</td>
<td>Required reporting to DC Prescription Monitoring Program (PMP)</td>
<td>Section 48-853.03</td>
<td>06/07/2019</td>
</tr>
<tr>
<td>Georgia⁵</td>
<td>Gabapentin determined to be a “dangerous drug”</td>
<td>O.C.G.A. 16-13-29, O.C.G.A. 16-13-71</td>
<td>2010</td>
</tr>
<tr>
<td>Indiana⁶</td>
<td>Required reporting to Indiana Scheduled Prescription Electronic Collection and Tracking (INSPECT) program</td>
<td>IC 35-48-1-9; IC 25-26-24-2.5</td>
<td>07/01/2019</td>
</tr>
<tr>
<td>Kansas⁷</td>
<td>Required reporting to Kansas Prescription Drug Monitoring Program (PDMP) (K-TRACS)</td>
<td>KS Stat § 65-4113 (2016), Section 68-21-7</td>
<td>07/25/2018</td>
</tr>
<tr>
<td>Kentucky⁸</td>
<td>Gabapentin classified as Schedule V</td>
<td>902 KAR 55:035</td>
<td>07/01/2017</td>
</tr>
<tr>
<td>Louisiana⁹</td>
<td>Gabapentin determined to be a “drug of concern”; required reporting to Louisiana PMP</td>
<td>LAC 46:LIII, Chapter 29</td>
<td>02/20/2021</td>
</tr>
<tr>
<td>Maryland¹⁰</td>
<td>Bill to require reporting to PDMP; HB0755 referred to committee; bill failed to advance</td>
<td>MD Crim Law Code § 5-406 (2018)</td>
<td>N/A</td>
</tr>
<tr>
<td>Massachusetts¹¹</td>
<td>Gabapentin classified as an “additional drug”; required reporting to Massachusetts PMP</td>
<td>Chapter 52, Section 69 (2016); 105 CMR 700.00; 105 CMR 700.012(C)(7)</td>
<td>08/01/2017</td>
</tr>
<tr>
<td>Michigan¹²</td>
<td>Gabapentin classified as Schedule V</td>
<td>Rule 338.3125</td>
<td>01/04/2019</td>
</tr>
<tr>
<td>Minnesota¹³</td>
<td>Required reporting to Minnesota PMP</td>
<td>§ 152.126; HF1652/SF1440 (2016)</td>
<td>08/01/2016</td>
</tr>
<tr>
<td>Mississippi¹⁴</td>
<td>Gabapentin determined to be a “drug of concern”; required reporting to Mississippi PMP</td>
<td>§ 73-21-127</td>
<td>05/01/2021</td>
</tr>
<tr>
<td>Nebraska¹⁵</td>
<td>Required reporting of all prescription medications to Nebraska PDMP</td>
<td>Nebraska Revised Statutes 71-2454, 71-2455, and 71-2456</td>
<td>01/01/2018</td>
</tr>
<tr>
<td>New Jersey¹⁶</td>
<td>Required reporting to New Jersey PMP</td>
<td>N.J.A.C. 13:45A-35.1</td>
<td>06/03/2019</td>
</tr>
<tr>
<td>New York¹⁷</td>
<td>Bills to classify gabapentin as a controlled substance and to require reporting to New York PMP; bills failed to advance</td>
<td>New York Public Health Law § 3306 (2018); SB S8145A, S3906, and A3823A</td>
<td>N/A</td>
</tr>
<tr>
<td>North Carolina¹⁸</td>
<td>Bill to require reporting to North Carolina Controlled Substances Reporting System; bill failed to advance</td>
<td>SB 546 (2019)</td>
<td>N/A</td>
</tr>
<tr>
<td>State</td>
<td>Gabapentin Status</td>
<td>Relevant Gabapentin Legislation</td>
<td>Effective Date</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>North Dakota</td>
<td>Required reporting to North Dakota PMP; gabapentin classified as Schedule V</td>
<td>Chapter 19-03.1 Uniform Controlled Substances Act; HB 1113</td>
<td>08/01/2017</td>
</tr>
<tr>
<td>Ohio</td>
<td>Required reporting to Ohio Automated Rx Reporting System</td>
<td>Rule 4729:8-2-02</td>
<td>12/01/2016</td>
</tr>
<tr>
<td>Oregon</td>
<td>Required reporting to Oregon PDMP</td>
<td>HB 2257</td>
<td>01/01/2020</td>
</tr>
<tr>
<td>Tennessee</td>
<td>Gabapentin classified as Schedule V; required reporting to Tennessee Controlled</td>
<td>Section 39-17-414; SB 2258/HB 1832 (2018)</td>
<td>07/01/2018</td>
</tr>
<tr>
<td></td>
<td>Substance Monitoring Database</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utah</td>
<td>Required reporting to Utah Controlled Substance Database (CSD); Board of Pharmacy</td>
<td>HB 449, Rule R156-37f-203(8); no change to Controlled Substances Act was recommended for 2022</td>
<td>04/01/2020</td>
</tr>
<tr>
<td></td>
<td>recommended classifying gabapentin as Schedule V (2020)</td>
<td>legislative session</td>
<td></td>
</tr>
<tr>
<td>Virginia</td>
<td>Required reporting to Virginia PMP; gabapentin classified as Schedule V</td>
<td>HB 2164; VA Code § 54.1-3454 (2020)</td>
<td>02/23/2017</td>
</tr>
<tr>
<td>West Virginia</td>
<td>Required reporting to West Virginia PMP; gabapentin classified as Schedule V</td>
<td>Section 16-54-4; WV Code § 60A-2-212 (2018)</td>
<td>07/07/2017</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>Required reporting to Wisconsin PDMP</td>
<td>WI Stat § 961.22 (2019); CSB 4 Clearinghouse Rule 20-080 § 961.385(1)</td>
<td>09/01/2021</td>
</tr>
<tr>
<td>Wyoming</td>
<td>Required reporting to Wyoming Online Prescription Database (WORx PDMP)</td>
<td>W.S. 35-7-1022 (2018); W.S. 35-7-1001-1101; WY Code of Rules 8-11</td>
<td>07/01/2017</td>
</tr>
</tbody>
</table>

N/A = not applicable.

Note: No evidence was found for gabapentin legislation in the States not included in the table.

12 State of Michigan, Department of Licensing and Regulatory Affairs. (2019, January 9). Gabapentin scheduled as controlled substance to help with state’s opioid epidemic. [online]. https://www.michigan.gov/lara/0,4601,7-154-11472-487050--,00.html

15 Balick, R. (2017, November 1). Nebraska pharmacists will report all prescriptions to state PDMP. Pharmacy Today, 23(11), 50–51. [online]. https://www.pharmacytoday.org/article/S1042-0991(17)31645-6/fulltext

27 Wisconsin State Legislature, Controlled Substances Board. (2021, August 30). Clearinghouse Rule CR 20-080. [online]. https://docs.legis.wisconsin.gov/code/chr/all/cr_20_080

Public Domain Notice: All material appearing in this publication is in the public domain and may be reproduced or copied without permission from the DEA. However, this publication may not be reproduced or distributed for a fee without the specific, written authorization of the U.S. Drug Enforcement Administration, U.S. Department of Justice. Citation of the source is appreciated.

Suggested citation:

Obtaining Copies of This Publication: Electronic copies of this publication can be downloaded from the NFLIS website at https://www.nflis.deadiversion.usdoj.gov.